Description
Add methods analogous to the spark.mllib MatrixFactorizationModel methods recommendProductsForUsers/UsersForProducts.
The initial implementation should be very simple, using DataFrame joins. Future work can add optimizations.
I recommend naming them:
- recommendForAllUsers
- recommendForAllItems
Attachments
Issue Links
- relates to
-
SPARK-13857 Feature parity for ALS ML with MLLIB
- Closed
-
SPARK-20300 Python API for ALSModel.recommendForAllUsers,Items
- Resolved
-
SPARK-10802 Let ALS recommend for subset of data
- Resolved
-
SPARK-20553 Update ALS examples for ML to illustrate recommend all
- Resolved
- links to