Details
Description
Here is the simple reproduce code:
$ HADOOP_CONF_DIR=/etc/hadoop/conf MASTER=yarn-client ./bin/pyspark
issue.py
>>> from pyspark.mllib.regression import LabeledPoint
>>> sc.parallelize([1,2,3]).map(lambda x: LabeledPoint(1, [2])).count()
Note: The same issue occurs with .collect() instead of .count()
TraceBack
Py4JJavaError: An error occurred while calling o110.collect. : org.apache.spark.SparkException: Job aborted due to stage failure: Task 8.0:0 failed 4 times, most recent failure: Exception failure in TID 52 on host ares: org.apache.spark.api.python.PythonException: Traceback (most recent call last): File "/mnt/storage/bigisle/yarn/1/yarn/local/usercache/blb/filecache/18/spark-assembly-1.0.0-hadoop2.2.0.jar/pyspark/worker.py", line 73, in main command = pickleSer._read_with_length(infile) File "/mnt/storage/bigisle/yarn/1/yarn/local/usercache/blb/filecache/18/spark-assembly-1.0.0-hadoop2.2.0.jar/pyspark/serializers.py", line 146, in _read_with_length return self.loads(obj) ImportError: No module named mllib.regression org.apache.spark.api.python.PythonRDD$$anon$1.read(PythonRDD.scala:115) org.apache.spark.api.python.PythonRDD$$anon$1.<init>(PythonRDD.scala:145) org.apache.spark.api.python.PythonRDD.compute(PythonRDD.scala:78) org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:262) org.apache.spark.rdd.RDD.iterator(RDD.scala:229) org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:111) org.apache.spark.scheduler.Task.run(Task.scala:51) org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:187) java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) java.lang.Thread.run(Thread.java:745) Driver stacktrace: at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1033) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1017) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1015) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1015) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:633) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:633) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:633) at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1207) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
However, this code works as expected:
noissue.py
>>> from pyspark.mllib.regression import LabeledPoint
>>> sc.parallelize([1,2,3]).map(lambda x: LabeledPoint(1, [2])).first()
>>> sc.parallelize([1,2,3]).map(lambda x: LabeledPoint(1, [2])).take(3)