Description
In the current impl, we have the limitation: users are unable to mix vectorized and non-vectorized UDFs in same Project. This becomes worse since our optimizer could combine continuous Projects into a single one. For example,
applied_df = df.withColumn('regular', my_regular_udf('total', 'qty')).withColumn('pandas', my_pandas_udf('total', 'qty'))
Returns the following error.
IllegalArgumentException: Can not mix vectorized and non-vectorized UDFs java.lang.IllegalArgumentException: Can not mix vectorized and non-vectorized UDFs at org.apache.spark.sql.execution.python.ExtractPythonUDFs$$anonfun$6.apply(ExtractPythonUDFs.scala:170) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$$anonfun$6.apply(ExtractPythonUDFs.scala:146) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$class.map(TraversableLike.scala:234) at scala.collection.immutable.List.map(List.scala:285) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$.org$apache$spark$sql$execution$python$ExtractPythonUDFs$$extract(ExtractPythonUDFs.scala:146) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$$anonfun$apply$2.applyOrElse(ExtractPythonUDFs.scala:118) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$$anonfun$apply$2.applyOrElse(ExtractPythonUDFs.scala:114) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$6.apply(TreeNode.scala:312) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$6.apply(TreeNode.scala:312) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:77) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:311) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:309) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:309) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$8.apply(TreeNode.scala:331) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:208) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:329) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:309) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:309) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$5.apply(TreeNode.scala:309) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$8.apply(TreeNode.scala:331) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:208) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:329) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:309) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$.apply(ExtractPythonUDFs.scala:114) at org.apache.spark.sql.execution.python.ExtractPythonUDFs$.apply(ExtractPythonUDFs.scala:94) at org.apache.spark.sql.execution.QueryExecution$$anonfun$prepareForExecution$1.apply(QueryExecution.scala:113) at org.apache.spark.sql.execution.QueryExecution$$anonfun$prepareForExecution$1.apply(QueryExecution.scala:113) at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124) at scala.collection.immutable.List.foldLeft(List.scala:84) at org.apache.spark.sql.execution.QueryExecution.prepareForExecution(QueryExecution.scala:113) at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:100) at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:99) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3312) at org.apache.spark.sql.Dataset.collectResult(Dataset.scala:2750) ...