XMLWordPrintableJSON

Details

    • Sub-task
    • Status: Resolved
    • Major
    • Resolution: Incomplete
    • 2.4.0
    • None
    • PySpark, SQL

    Description

      Currently, Grouped AGG PandasUDF is not supported in Pivot. It is nice to support it.

      # create input dataframe
      from pyspark.sql import Row
      data = [
        Row(id=123, total=200.0, qty=3, name='item1'),
        Row(id=124, total=1500.0, qty=1, name='item2'),
        Row(id=125, total=203.5, qty=2, name='item3'),
        Row(id=126, total=200.0, qty=500, name='item1'),
      ]
      df = spark.createDataFrame(data)
      
      from pyspark.sql.functions import pandas_udf, PandasUDFType
      
      @pandas_udf('double', PandasUDFType.GROUPED_AGG)
      def pandas_avg(v):
         return v.mean()
      
      from pyspark.sql.functions import col, sum
        
      applied_df = df.groupby('id').pivot('name').agg(pandas_avg('total').alias('mean'))
      
      applied_df.show()
      
      

      Attachments

        Activity

          People

            Unassigned Unassigned
            smilegator Xiao Li
            Votes:
            0 Vote for this issue
            Watchers:
            6 Start watching this issue

            Dates

              Created:
              Updated:
              Resolved: