Uploaded image for project: 'Spark'
  1. Spark
  2. SPARK-24957

Decimal arithmetic can lead to wrong values using codegen

    XMLWordPrintableJSON

Details

    • Bug
    • Status: Resolved
    • Major
    • Resolution: Fixed
    • 2.0.2, 2.1.3, 2.2.2, 2.3.1
    • 2.2.3, 2.3.2, 2.4.0
    • SQL

    Description

      I noticed a bug when doing arithmetic on a dataframe containing decimal values with codegen enabled.
      I tried to narrow it down on a small repro and got this (executed in spark-shell):

      scala> val df = Seq(
           | ("a", BigDecimal("12.0")),
           | ("a", BigDecimal("12.0")),
           | ("a", BigDecimal("11.9999999988")),
           | ("a", BigDecimal("12.0")),
           | ("a", BigDecimal("12.0")),
           | ("a", BigDecimal("11.9999999988")),
           | ("a", BigDecimal("11.9999999988"))
           | ).toDF("text", "number")
      df: org.apache.spark.sql.DataFrame = [text: string, number: decimal(38,18)]
      
      scala> val df_grouped_1 = df.groupBy(df.col("text")).agg(functions.avg(df.col("number")).as("number"))
      df_grouped_1: org.apache.spark.sql.DataFrame = [text: string, number: decimal(38,22)]
      
      scala> df_grouped_1.collect()
      res0: Array[org.apache.spark.sql.Row] = Array([a,11.9999999994857142857143])
      
      scala> val df_grouped_2 = df_grouped_1.groupBy(df_grouped_1.col("text")).agg(functions.sum(df_grouped_1.col("number")).as("number"))
      df_grouped_2: org.apache.spark.sql.DataFrame = [text: string, number: decimal(38,22)]
      
      scala> df_grouped_2.collect()
      res1: Array[org.apache.spark.sql.Row] = Array([a,1199999999948571.4285714285714285714286])
      
      scala> val df_total_sum = df_grouped_1.agg(functions.sum(df_grouped_1.col("number")).as("number"))
      df_total_sum: org.apache.spark.sql.DataFrame = [number: decimal(38,22)]
      
      scala> df_total_sum.collect()
      res2: Array[org.apache.spark.sql.Row] = Array([11.9999999994857142857143])
      

      The results of df_grouped_1 and df_total_sum are correct, whereas the result of df_grouped_2 is clearly incorrect (it is the value of the correct result times 10^14).

      When codegen is disabled all results are correct.

      Attachments

        Issue Links

          Activity

            People

              mgaido Marco Gaido
              dvogelbacher David Vogelbacher
              Votes:
              0 Vote for this issue
              Watchers:
              9 Start watching this issue

              Dates

                Created:
                Updated:
                Resolved: