Details
-
New Feature
-
Status: Resolved
-
Major
-
Resolution: Won't Fix
-
None
-
None
-
None
-
Important
Description
Introduction
As specified in SPARK-4590,it would be very helpful to integrate parameter server into Spark for machine learning algorithms, especially for those with ultra high dimensions features.
After carefully studying the design doc of Parameter Servers,and the paper of Factorbird, we proposed a prototype of Parameter Server on Spark(Ps-on-Spark), with several key design concerns:
- User friendly interface
Careful investigation is done to most existing Parameter Server systems(including: petuum, parameter server, paracel) and a user friendly interface is design by absorbing essence from all these system.
- Prototype of distributed array
IndexRDD (see SPARK-4590) doesn't seem to be a good option for distributed array, because in most case, the #key updates/second is not be very high.
So we implement a distributed HashMap to store the parameters, which can be easily extended to get better performance.
- Minimal code change
Quite a lot of effort in done to avoid code change of Spark core. Tasks which need parameter server are still created and scheduled by Spark's scheduler. Tasks communicate with parameter server with a client object, through akka or netty.
With all these concerns we propose the following architecture:
Architecture
Data is stored in RDD and is partitioned across workers. During each iteration, each worker gets parameters from parameter server then computes new parameters based on old parameters and data in the partition. Finally each worker updates parameters to parameter server.Worker communicates with parameter server through a parameter server client,which is initialized in `TaskContext` of this worker.
The current implementation is based on YARN cluster mode,
but it should not be a problem to transplanted it to other modes.
Interface
We refer to existing parameter server systems(petuum, parameter server, paracel) when design the interface of parameter server.
`PSClient` provides the following interface for workers to use:
// get parameter indexed by key from parameter server def get[T](key: String): T // get multiple parameters from parameter server def multiGet[T](keys: Array[String]): Array[T] // add parameter indexed by `key` by `delta`, // if multiple `delta` to update on the same parameter, // use `reduceFunc` to reduce these `delta`s frist. def update[T](key: String, delta: T, reduceFunc: (T, T) => T): Unit // update multiple parameters at the same time, use the same `reduceFunc`. def multiUpdate(keys: Array[String], delta: Array[T], reduceFunc: (T, T) => T: Unit // advance clock to indicate that current iteration is finished. def clock(): Unit // block until all workers have reached this line of code. def sync(): Unit
`PSContext` provides following functions to use on driver:
// load parameters from existing rdd. def loadPSModel[T](model: RDD[String, T]) // fetch parameters from parameter server to construct model. def fetchPSModel[T](keys: Array[String]): Array[T]
A new function has been add to `RDD` to run parameter server tasks:
// run the provided `func` on each partition of this RDD. // This function can use data of this partition(the first argument) // and a parameter server client(the second argument). // See the following Logistic Regression for an example. def runWithPS[U: ClassTag](func: (Array[T], PSClient) => U): Array[U]
Example
Here is an example of using our prototype to implement logistic regression:
def train( sc: SparkContext, input: RDD[LabeledPoint], numIterations: Int, stepSize: Double, miniBatchFraction: Double): LogisticRegressionModel = { // initialize weights val numFeatures = input.map(_.features.size).first() val initialWeights = new Array[Double](numFeatures) // initialize parameter server context val pssc = new PSContext(sc) // load initialized weights into parameter server val initialModelRDD = sc.parallelize(Array(("w", initialWeights)), 1) pssc.loadPSModel(initialModelRDD) // run logistic regression algorithm on input data input.runWithPS((arr, client) => { val sampler = new BernoulliSampler[LabeledPoint](miniBatchFraction) // for each iteration, compute delta and update weights for (i <- 0 to numIterations) { // get weights from parameter server val weights = Vectors.dense(client.get[Array[Double]]("w")) sampler.setSeed(i + 42) // for each sample point, compute delta and update weights sampler.sample(arr.toIterator).foreach { point => // compute delta val data = point.features val label = point.label val margin = -1.0 * dot(data, weights) val multiplier = (1.0 / (1.0 + math.exp(margin))) - label val delta = Vectors.dense(new Array[Double](numFeatures)) axpy((-1) * stepSize / math.sqrt(i + 1) * multiplier, data, delta) // update weights client.update("w", delta.toArray, (d1, d2) => { d1.zip(d2).map((a, b) => a + b) }) } // end of current iteration client.clock() } }) // fetch weights from parameter server val weights = Vectors.dense(pssc.fetchPSModel[Array[Double]](Array("w"))(0)) val intercept = 0.0 // construct LogisiticRegressionModel new LogisticRegressionModel(weights, intercept).clearThreshold() }
The above code can be run on current PS-on-Spark implementation.
Other considerations
The current implementation is just a prototype and we will try to improve it in the following directions:
Consistency protocol
Currently we have just implemented BSP protocol. And SSP consistency will be added soon.
Model partition across servers
Currently all the parameters are stored on a single server. Parameters should be partitioned across multiple servers when the parameter size get large. Parameter server client should route request to different servers accordingly.
Performance optimizing
To get better performance, client can cache parameter servers and store updates through operation log(as petuum does). There may be some other ways to improve performance.
Fault Recovery
When a parameter server crashes, it should be restarted on another node. Data of a parameter server should be periodically checkpointed so it can be transfered when a server is restarted.When a task is restarted, it should not rerun finished iterations.
We would like to see parameter server integrated into Spark soon and hope this help other Spark users who need parameter server. As specified above, there is still much work to be done so any comments are welcome.
Attachments
Issue Links
- is related to
-
SPARK-6567 Large linear model parallelism via a join and reduceByKey
- Resolved
-
SPARK-4590 Early investigation of parameter server
- Resolved