Details
-
Bug
-
Status: Resolved
-
Major
-
Resolution: Fixed
-
1.2.1
-
None
-
MapR 4.0.1, Hadoop 2.4.1, Yarn
Description
I received the following error report from a user:
While running a Spark Streaming job that reads from MapRfs and writes to HBase using Spark 1.2.1, the job intermittently experiences a total job failure due to the following errors:
15/05/28 10:35:50 ERROR executor.Executor: Exception in task 1.1 in stage 6.0 (TID 24) java.lang.NullPointerException at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$4.apply(SparkHadoopUtil.scala:178) at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$4.apply(SparkHadoopUtil.scala:178) at scala.collection.TraversableLike$$anonfun$filter$1.apply(TraversableLike.scala:264) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.IterableLike$class.foreach(IterableLike.scala:72) at scala.collection.AbstractIterable.foreach(Iterable.scala:54) at scala.collection.TraversableLike$class.filter(TraversableLike.scala:263) at scala.collection.AbstractTraversable.filter(Traversable.scala:105) at org.apache.spark.deploy.SparkHadoopUtil.getFileSystemThreadStatistics(SparkHadoopUtil.scala:178) at org.apache.spark.deploy.SparkHadoopUtil.getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:139) at org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:116) at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:107) at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:69) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:280) at org.apache.spark.rdd.RDD.iterator(RDD.scala:247) at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:280) at org.apache.spark.rdd.RDD.iterator(RDD.scala:247) at org.apache.spark.rdd.FlatMappedRDD.compute(FlatMappedRDD.scala:33) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:280) at org.apache.spark.rdd.RDD.iterator(RDD.scala:247) at org.apache.spark.rdd.FilteredRDD.compute(FilteredRDD.scala:34) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:280) at org.apache.spark.rdd.RDD.iterator(RDD.scala:247) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) at org.apache.spark.scheduler.Task.run(Task.scala:56) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:200) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:744) 15/05/28 10:35:50 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 25 15/05/28 10:35:50 INFO executor.Executor: Running task 2.1 in stage 6.0 (TID 25) 15/05/28 10:35:50 INFO rdd.NewHadoopRDD: Input split: hdfs:/[REDACTED] 15/05/28 10:35:50 ERROR executor.Executor: Exception in task 2.1 in stage 6.0 (TID 25) java.lang.NullPointerException at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$4.apply(SparkHadoopUtil.scala:178) at org.apache.spark.deploy.SparkHadoopUtil$$anonfun$4.apply(SparkHadoopUtil.scala:178) at scala.collection.TraversableLike$$anonfun$filter$1.apply(TraversableLike.scala:264) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
Diving into the code here:
The NPE is occurring on this line of SparkHadoopUtil (in 1.2.1.): https://github.com/apache/spark/blob/v1.2.1/core/src/main/scala/org/apache/spark/deploy/SparkHadoopUtil.scala#L178
Here's that block of code from 1.2.1 (it's the same in 1.2.2):
private def getFileSystemThreadStatistics(path: Path, conf: Configuration): Seq[AnyRef] = { val qualifiedPath = path.getFileSystem(conf).makeQualified(path) val scheme = qualifiedPath.toUri().getScheme() val stats = FileSystem.getAllStatistics().filter(_.getScheme().equals(scheme)) // <--- exception occurs at this line stats.map(Utils.invoke(classOf[Statistics], _, "getThreadStatistics")) }
Since the top call on the stack was org.apache.spark.deploy.SparkHadoopUtil$$anonfun$4, I'm assuming that the _.getScheme().equals(scheme) call here is failing because FileSystem.getAllStatistics() is returning a collection that has a null element or that _.getScheme() is null.
Diving into the Hadoop source, it looks like FileSystem.getAllStatistics() accesses some synchronized static state to return statistics for all Hadoop filesystems created within the JVM. I wonder if it's possible that some code is nondeterministically creating a new FIleSystem instance for a FileSystem that lacks a scheme, causing entires to be stored in the statistics map that will return null when we call getScheme() on them.
I am unable to reproduce this issue myself, but I think that we can fix it for the user by adding try-catch blocks to prevent errors in metrics collection from leading to task failures.